Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114005, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38551961

RESUMO

The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.


Assuntos
Células Amácrinas , Adesão Celular , Endocitose , PTEN Fosfo-Hidrolase , Retina , Via de Sinalização Wnt , Animais , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Retina/metabolismo , Camundongos , Células Amácrinas/metabolismo , Camundongos Knockout , Transporte Proteico , Proteínas Wnt/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética
2.
Proc Natl Acad Sci U S A ; 120(19): e2122168120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126716

RESUMO

Temporal identity factors are sufficient to reprogram developmental competence of neural progenitors and shift cell fate output, but whether they can also reprogram the identity of terminally differentiated cells is unknown. To address this question, we designed a conditional gene expression system that allows rapid screening of potential reprogramming factors in mouse retinal glial cells combined with genetic lineage tracing. Using this assay, we found that coexpression of the early temporal identity transcription factors Ikzf1 and Ikzf4 is sufficient to directly convert Müller glial (MG) cells into cells that translocate to the outer nuclear layer (ONL), where photoreceptor cells normally reside. We name these "induced ONL (iONL)" cells. Using genetic lineage tracing, histological, immunohistochemical, and single-cell transcriptome and multiome analyses, we show that expression of Ikzf1/4 in MG in vivo, without retinal injury, mostly generates iONL cells that share molecular characteristics with bipolar cells, although a fraction of them stain for Rxrg, a cone photoreceptor marker. Furthermore, we show that coexpression of Ikzf1 and Ikzf4 can reprogram mouse embryonic fibroblasts to induced neurons in culture by rapidly remodeling chromatin and activating a neuronal gene expression program. This work uncovers general neuronal reprogramming properties for temporal identity factors in terminally differentiated cells.


Assuntos
Fibroblastos , Retina , Animais , Camundongos , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Fatores de Transcrição/metabolismo , Diferenciação Celular/fisiologia , Reprogramação Celular
3.
Semin Cell Dev Biol ; 142: 36-42, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35760728

RESUMO

Understanding how retinal progenitor cells (RPCs) give rise to the variety of neural cell types of the retina has been a question of major interest over the last few decades. While environmental cues and transcription factor networks have been shown to control specific cell fate decisions, how RPCs alter fate output over time to control proper histogenesis remains poorly understood. In recent years, the identification of "temporal identity factors (TIFs)", which control RPC competence states to ensure that the right cell types are produced at the right time, has contributed to increasing our understanding of temporal patterning in the retina. Here, we review the different TIFs identified to date in the mammalian retina and discuss the underlying mechanisms by which they are thought to operate. We conclude by speculating on how identification of temporal patterning mechanisms might support the development of new therapeutic approaches against visual impairments.


Assuntos
Retina , Células-Tronco , Animais , Células-Tronco/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular , Mamíferos
4.
Front Cell Dev Biol ; 10: 887764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663397

RESUMO

Vision commences in the retina with rod and cone photoreceptors that detect and convert light to electrical signals. The irreversible loss of photoreceptors due to neurodegenerative disease leads to visual impairment and blindness. Interventions now in development include transplanting photoreceptors, committed photoreceptor precursors, or retinal pigment epithelial (RPE) cells, with the latter protecting photoreceptors from dying. However, introducing exogenous human cells in a clinical setting faces both regulatory and supply chain hurdles. Recent work has shown that abnormalities in central cell metabolism pathways are an underlying feature of most neurodegenerative disorders, including those in the retina. Reversal of key metabolic alterations to drive retinal repair thus represents a novel strategy to treat vision loss based on cell regeneration. Here, we review the connection between photoreceptor degeneration and alterations in cell metabolism, along with new insights into how metabolic reprogramming drives both retinal development and repair following damage. The potential impact of metabolic reprogramming on retinal regeneration is also discussed, specifically in the context of how metabolic switches drive both retinal development and the activation of retinal glial cells known as Müller glia. Müller glia display latent regenerative properties in teleost fish, however, their capacity to regenerate new photoreceptors has been lost in mammals. Thus, re-activating the regenerative properties of Müller glia in mammals represents an exciting new area that integrates research into developmental cues, central metabolism, disease mechanisms, and glial cell biology. In addition, we discuss this work in relation to the latest insights gleaned from other tissues (brain, muscle) and regenerative species (zebrafish).

5.
Neuron ; 109(18): 2847-2863.e11, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34407390

RESUMO

Asymmetric neuronal expansion is thought to drive evolutionary transitions between lissencephalic and gyrencephalic cerebral cortices. We report that Neurog2 and Ascl1 proneural genes together sustain neurogenic continuity and lissencephaly in rodent cortices. Using transgenic reporter mice and human cerebral organoids, we found that Neurog2 and Ascl1 expression defines a continuum of four lineage-biased neural progenitor cell (NPC) pools. Double+ NPCs, at the hierarchical apex, are least lineage restricted due to Neurog2-Ascl1 cross-repression and display unique features of multipotency (more open chromatin, complex gene regulatory network, G2 pausing). Strikingly, selectively eliminating double+ NPCs by crossing Neurog2-Ascl1 split-Cre mice with diphtheria toxin-dependent "deleter" strains locally disrupts Notch signaling, perturbs neurogenic symmetry, and triggers cortical folding. In support of our discovery that double+ NPCs are Notch-ligand-expressing "niche" cells that control neurogenic periodicity and cortical folding, NEUROG2, ASCL1, and HES1 transcript distribution is modular (adjacent high/low zones) in gyrencephalic macaque cortices, prefiguring future folds.


Assuntos
Diferenciação Celular/fisiologia , Neocórtex/embriologia , Neocórtex/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Células Cultivadas , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Neocórtex/citologia , Gravidez , Imagem com Lapso de Tempo/métodos
6.
Front Cell Dev Biol ; 9: 681087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291049

RESUMO

Direct neuronal reprogramming is an innovative new technology that involves the conversion of somatic cells to induced neurons (iNs) without passing through a pluripotent state. The capacity to make new neurons in the brain, which previously was not achievable, has created great excitement in the field as it has opened the door for the potential treatment of incurable neurodegenerative diseases and brain injuries such as stroke. These neurological disorders are associated with frank neuronal loss, and as new neurons are not made in most of the adult brain, treatment options are limited. Developmental biologists have paved the way for the field of direct neuronal reprogramming by identifying both intrinsic cues, primarily transcription factors (TFs) and miRNAs, and extrinsic cues, including growth factors and other signaling molecules, that induce neurogenesis and specify neuronal subtype identities in the embryonic brain. The striking observation that postmitotic, terminally differentiated somatic cells can be converted to iNs by mis-expression of TFs or miRNAs involved in neural lineage development, and/or by exposure to growth factors or small molecule cocktails that recapitulate the signaling environment of the developing brain, has opened the door to the rapid expansion of new neuronal reprogramming methodologies. Furthermore, the more recent applications of neuronal lineage conversion strategies that target resident glial cells in situ has expanded the clinical potential of direct neuronal reprogramming techniques. Herein, we present an overview of the history, accomplishments, and therapeutic potential of direct neuronal reprogramming as revealed over the last two decades.

7.
Theranostics ; 10(7): 2982-2999, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194850

RESUMO

Müller glia are specialized retinal cells with stem cell properties in fish and frogs but not in mammals. Current efforts to develop gene therapies to activate mammalian Müller glia for retinal repair will require safe and effective delivery strategies for recombinant adeno-associated viruses (AAVs), vectors of choice for clinical translation. Intravitreal and subretinal injections are currently used for AAV gene delivery in the eye, but less invasive methods efficiently targeting Müller glia have yet to be developed. Methods: As gene delivery strategies have been more extensively studied in the brain, to validate our vectors, we initially compared the glial tropism of AAV-PHP.eB, an AAV9 that crosses the blood-brain and blood-retinal barriers, for its ability to drive fluorescent protein expression in glial cells in both the brain and retina. We then tested the glial transduction of AAV2/8-GFAP-mCherry, a virus that does not cross blood-brain and blood-retinal barriers, for its effectiveness in transducing Müller glia in murine retinal explants ex vivo. For in vivo assays we used larger rat eyes, performing invasive intravitreal injections, and non-invasive intravenous delivery using focused ultrasound (FUS) (pressure amplitude: 0.360 - 0.84 MPa) and microbubbles (Definity, 0.2 ml/kg). Results: We showed that AAV-PHP.eB carrying a ubiquitous promoter (CAG) and green fluorescent protein (GFP) reporter, readily crossed the blood-brain and blood-retinal barriers after intravenous delivery in mice. However, murine Müller glia did not express GFP, suggesting that they were not transduced by AAV-PHP.eB. We thus tested an AAV2/8 variant, which was selected based on its safety record in multiple clinical trials, adding a glial fibrillary acidic protein (GFAP) promoter and mCherry (red fluorescent protein) reporter. We confirmed the glial specificity of AAV2/8-GFAP-mCherry, showing effective expression of mCherry in astrocytes after intracranial injection in the mouse brain, and of Müller glia in murine retinal explants. For in vivo experiments we switched to rats because of their larger size, injecting AAV2/8-GFAP-mCherry intravitreally, an invasive procedure, demonstrating passage across the inner limiting membrane, leading to Müller glia transduction. We then tested an alternative non-invasive delivery approach targeting a different barrier - the inner blood-retinal-barrier, applying focused ultrasound (FUS) to the retina after intravenous injection of AAV2/8 and microbubbles in rats, using magnetic resonance imaging (MRI) for FUS targeting. FUS permeabilized the rat blood-retinal-barrier and allowed the passage of macromolecules to the retina (Evans blue, IgG, IgM), with minimal extravasation of platelets and red blood cells. Intravenous injection of microbubbles and AAV2/8-GFAP-mCherry followed by FUS resulted in mCherry expression in rat Müller glia. However, systemic delivery of AAV2/8 also had off-target effects, transducing several murine peripheral organs, particularly the liver. Conclusions: Retinal permeabilisation via FUS in the presence of microbubbles is effective for delivering AAV2/8 across the inner blood-retinal-barrier, targeting Müller glia, which is less invasive than intravitreal injections that bypass the inner limiting membrane. However, implementing FUS in the clinic will require a comprehensive consideration of any off-target tropism of the AAV in peripheral organs, combined ideally, with the development of Müller glia-specific promoters.


Assuntos
Células Ependimogliais , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Sonicação/métodos , Animais , Barreira Hematoencefálica , Barreira Hematorretiniana , Dependovirus/genética , Genes Sintéticos , Vetores Genéticos/farmacocinética , Proteína Glial Fibrilar Ácida/administração & dosagem , Proteína Glial Fibrilar Ácida/genética , Proteínas de Fluorescência Verde/administração & dosagem , Proteínas de Fluorescência Verde/genética , Injeções Intravítreas , Rim/química , Fígado/química , Proteínas Luminescentes/administração & dosagem , Proteínas Luminescentes/genética , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Microbolhas , Regiões Promotoras Genéticas , Ratos , Sonicação/efeitos adversos , Distribuição Tecidual , Transdução Genética , Proteína Vermelha Fluorescente
8.
Dis Model Mech ; 11(5)2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29716894

RESUMO

PTEN hamartoma tumour syndrome (PHTS) is a heterogeneous group of rare, autosomal dominant disorders associated with PTEN germline mutations. PHTS patients routinely develop hamartomas, which are benign tissue overgrowths comprised of disorganized 'normal' cells. Efforts to generate PHTS animal models have been largely unsuccessful due to the early lethality of homozygous germline mutations in Pten, together with the lack of hamartoma formation in most conditional mutants generated to date. We report herein a novel PHTS mouse model that reproducibly forms hamartoma-like lesions in the central retina by postnatal day 21. Specifically, we generated a Pten conditional knockout (cKO) using a retinal-specific Pax6::Cre driver that leads to a nearly complete deletion of Pten in the peripheral retina but produces a mosaic of 'wild-type' and Pten cKO cells centrally. Structural defects were only observed in the mosaic central retina, including in Müller glia and in the outer and inner limiting membranes, suggesting that defective mechanical integrity partly underlies the hamartoma-like pathology. Finally, we used this newly developed model to test whether rapamycin, an mTOR inhibitor that is currently the only PHTS therapy, can block hamartoma growth. When administered in the early postnatal period, prior to hamartoma formation, rapamycin reduces hamartoma size, but also induces new morphological abnormalities in the Pten cKO retinal periphery. In contrast, administration of rapamycin after hamartoma initiation fails to reduce lesion size. We have thus generated and used an animal model of retinal PHTS to show that, although current therapies can reduce hamartoma formation, they might also induce new retinal dysmorphologies.This article has an associated First Person interview with the first author of the paper.


Assuntos
Síndrome do Hamartoma Múltiplo/patologia , Retina/patologia , Animais , Animais Recém-Nascidos , Divisão Celular , Modelos Animais de Doenças , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Síndrome do Hamartoma Múltiplo/tratamento farmacológico , Camundongos Knockout , Mosaicismo , Mutação/genética , Neuroglia/metabolismo , Neuroglia/patologia , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...